

DPP - 2 (Waves)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/91
https://youtu.be/2_xDNCN4DCo

Q 1. The speed of a wave on a string is $150 \mathrm{~m} / \mathrm{s}$ when the tension is 120 N . The percentage increase in the tension in order to raise the wave speed by 20% is
(a) 44%
(b) 40%
(c) 20%
(d) 10%

Q 2. If tension of a wire is increased to four times, how is the wave speed changed?
(a) Become 4 times
(b) Become 2 times
(c) Become $\frac{1}{2}$ times
(d) Become $\frac{1}{4}$ times

Q 3. Speed of transverse wave in a string of density $100 \mathrm{~kg} / \mathrm{m}^{3}$ and area of cross-section $10 \mathrm{~mm}^{2}$ under a tension of $10^{3} \mathrm{~N}$ is
(a) $100 \mathrm{~m} / \mathrm{s}$
(b) $1000 \mathrm{~m} / \mathrm{s}$
(c) $200 \mathrm{~m} / \mathrm{s}$
(d) $2000 \mathrm{~m} / \mathrm{s}$

Q 4. Transverse waves travel with a speed of $20.0 \mathrm{~m} / \mathrm{s}$ in a string under a tension of 6.00 N . what tension is required for a wave speed of $30.0 \mathrm{~m} / \mathrm{s}$ in the same string?
(a) 12 N
(b) 11.5 N
(c) 4.5 N
(d) 13.5 N

Q 5. What is the speed of a transverse wave in a rope of length 10 m and mass 80 gm under a tension of 80 N ?
(a) $100 \mathrm{~m} / \mathrm{s}$
(b) $200 \mathrm{~m} / \mathrm{s}$
(c) $300 \mathrm{~m} / \mathrm{s}$
(d) $50 \mathrm{~m} / \mathrm{s}$

Q 6. A uniform rope of mass 0.1 kg and length 2.45 m hangs from a ceiling.
(a) Find the speed of transverse wave in the rope at a point 0.5 m distant from the lower end.
(b) Calculate the time taken by a transverse wave to travel the full length of the rope.

(a) $1.11 \mathrm{~m} / \mathrm{s}, 1 \mathrm{sec}$
(b) $1.22 \mathrm{~m} / \mathrm{s}, 2 \mathrm{sec}$

(c) $2.22 \mathrm{~m} / \mathrm{s}, 1 \mathrm{sec}$
(d) $3.11 \mathrm{~m} / \mathrm{s}, 2 \mathrm{sec}$

Q 7. Along a stretched wire a transverse wave passes with speed $3000 \mathrm{~m} / \mathrm{s}$. If the tension in the wire increased four times, then the velocity of the wave is
(a) $1500 \mathrm{~m} / \mathrm{s}$
(b) $3000 \mathrm{~m} / \mathrm{s}$
(c) $6000 \mathrm{~m} / \mathrm{s}$
(d) $9000 \mathrm{~m} / \mathrm{s}$

Q 8. A uniform rope of length 12 m and mass 6 kg hangs vertically from a rigid support. A block of mass 2 kg is attached to the free end of the rope. A transverse pulse of wavelengths 0.06 m is produced at the lower end of the rope. What is the wavelength of the pulse when it reaches the top of the rope?
(a) 0.06 m
(b) 0.12 m
(c) 0.24 m
(d) 0.36 m

Q 9. A certain 120 Hz wave on a string has an amplitude of 0.160 mm . The amount of energy exists in an 80 g length of the string is $58 \times 10^{-x} m \mathrm{~J}$. Find x
(a) 1
(b) 2
(c) 4
(d) 6

Q 10. If the frequency and amplitude of a transverse wave on a string are both doubled, then the amount of energy transmitted through the string is
(a) doubled
(b) becomes 4 time
(c) Becomes 16 times
(d) becomes 32 times

Q 11. A 200 Hz wave with amplitude 1 mm travels on a long string of linear mass density $6 \mathrm{~g} / \mathrm{m}$ keep under a tension of 60 N .
(a) Find the average power transmitted across a given point on the string.
(b) Find the total energy associated with the wave in a 2.0 m long portion of the string.
(a) $0.79 \mathrm{~W}, 3.9 \mathrm{~mJ}$
(b) $1.41 \mathrm{~W}, 1.9 \mathrm{~mJ}$
(c) $0.12 \mathrm{~W}, 4.1 \mathrm{~mJ}$
(d) $0.47 \mathrm{~W}, 9.4 \mathrm{~mJ}$

Q 12. The average power transmitted through a given point on a string supporting a sine wave is 0.20 W when the amplitude of the wave is 2.0 mm . What power will be transmifted through this point if the amplitude is increased to 3.0 mm .
(a) 0.45 W
(b) 0.65 W
(c) 1.45 W
(d) 1.65 W

Q 13. A transverse wave of amplitude 0.50 mm and frequency 100 Hz is produced on a wire stretched to a tension of 100 N . If the wave speed is $100 \mathrm{~m} / \mathrm{s}$. What average power is the source transmitting to the wire?
(a) 45 mJ
(b) 49 mJ
(c) 24 mJ
(d) 37 mJ

Q 14. The time taken by a transverse wave going on a wire having mass 5 g , form one end to another end of wire is 0.5 s . The area of cross-section of wire is $1 \mathrm{~mm}^{2}$ and Young's modulus of elasticity is $16 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$. The speed of wave is $80 \mathrm{~m} / \mathrm{s}$. The strain in wire is
(a) 2×10^{-7}
(b) 5×10^{-7}
(c) 4×10^{-6}
(d) 3×10^{-6}

Answer Key

Q. 1	a	Q. 2	b	Q. 3	b	Q. 4	d	Q. 5	a
Q.6	c	Q. 7	c	Q. 8	b	Q.9	b	Q.10	c
Q. 11	d	Q.12	a	Q.13	b	Q.14	b		

